【精选】小学数学教案模板汇总6篇
作为一名教职工,时常要开展教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。那么写教案需要注意哪些问题呢?下面是小编为大家收集的小学数学教案6篇,希望对大家有所帮助。
教学目标
1、通过解决姐、弟二人的邮票张数问题,进一步理解方程的意义。
2、通过解决问题的过程,学会解形如2X-X=3这样的方程。
教学重难点
学会解形如2X-X=3这样的方程
教学过程
活动一:创设情境,建立模型。
1、看图说一说你收集到哪些数学信息?交流。
2、图中告诉我们等量关系是什么?
(姐姐的张数+弟弟的张数=180)
3、求姐、弟各有多少张?你会画线段图吗?画一画。
X
弟弟
3X180
姐姐
4、设谁为X比较简便?为什么?
5、解:设弟弟有X张邮票,那姐姐呢?你会列方程解答吗?
6、学生汇报。
7、解:设弟弟有X张邮票,那姐姐有3X张邮票。
X+3X=180X+3X是多少?你怎样想?
4X=180(1个X与3个X合并起来是4X)
2X=90
X=45
3X=45×3=135
答:弟弟有45张邮票,那姐姐有135张邮票。
8、书写时要注意什么?
9、做完后还需要验证,怎样验证?
10、想一想,如果利用姐姐比弟弟多90张的条件,可以怎么列方程?
先画线段图,再列,方程解答,并交流。
解:设弟弟有X张邮票,那姐姐有90+X张邮票。
90+X+X=18011、通过刚才解决问题,你们有什么收获?
活动二:解释运用:试一试
解方程:5Y+Y=96X+3X=724M-2M=48
Y+Y=335X-2X=1232X-X=4
(1)读题
(2)怎样解方程
(3)怎样检验?
练一练
1、解方程:
2、岚岚几岁了?
列方程并解答
理解题意,解方程解答,并检验
X+6X=35或7X-X=30
3、列方程30X=600。
生独立完成。
4、(1)书上告诉了我们什么?你能提什么问题?
(2)怎样列方程?
25X-4X=31.5
(3)怎样解方程?
(4)你怎样验证?
板书设计
邮票的张数
解:设弟弟有X张邮票,那姐姐有3X张邮票。
X+3X=180X+3X是多少?你怎样想?
4X=180(1个X与3个X合并起来是4X)
2X=90
X=45
3X=45×3=135
答:弟弟有45张邮票,那姐姐有135张邮票。
教学内容:冀教版《数学》五年级上册第48-49页
教学目标:
1、在自主计算、借助计算器计算的活动中,经历初步认识循环小数的过程。
2、知道什么是循环小数,能指出哪些商是循环小数。
3、体会计算器的工具性,在借助计算器进行数学探索的活动中获得成功的体验。
教学过程:
教学环节师生活动设计意图
一、创设情境
师生谈话,由树上结果实的话题,引出教材中的问题。教师口述大枣、核桃的价钱信息,并板书出来。
(设计意图:由现实生活中秋季结果的谈话开始,创造愉快和谐的课堂氛围,自然引出要解决的问题情境。)
二、解决问题
1、提出“估算一下大枣和核桃的单价哪个便宜一些”的问题,要求说一说是怎样估算的,给学生充分表达不同想法的机会。
(设计意图:充分利用课程资源,为学生估算的机会,培养学生估算意识和能力,发展数感。)
2、平均每千克大枣多少元。
提出问题,让学生列式并尝试用竖式计算。当板演的学生除到三位小数时,停止计算。
(设计意图:经历自主计算,初步感受商的特点的过程,为认识循环小数感性材料。)
汇报计算的情况,说一说发现了什么问题。给学生充分交流不同结果的机会。
(设计意图:在交流讨论的过程中,了解商中数的字3重复出现的事实,初步感受循环现象,增强学生进一步学习的好奇心。)
鼓励学生用自己的话解释商重复出现的原因。
(设计意图:以已有经验的基础上,带着问题经历自主计算,发现商的特点的过程,为认识循环小数感性材料。)
3、平均每千克核桃多少元。
提出问题,让学生列式并尝试用竖式计算。提示:边计算边观察商有什么特点。
(设计意图:在展示交流的过程中,使学生感受循环小数的特点。)
交流计算情况,讨论除得的商有什么特点,要给学生充分展示不同结果和想法的机会。
(设计意图:在自主尝试计算、交流的基础上,引导学生进行合理推测,培养学生归纳、推理能力,发展数学思维。)
让学生观察竖式,并提出“想一想”的问题。
用计算器验算。
三、循环小数
1、写出58.6÷11,学生用计算器计算后交流计算结果。
(设计意图:借助计算器,可使学生摆脱烦琐的计算,把更多的时间用于循环小数的研究和学习上。)
2、让学生观察58.6÷11的商,讨论商有什么特点。使学生了解从商的小数部分,第二位开始,重复出现2和7两个数字。
(设计意图:在观察讨论中使学生体会到商中数字循环的不同特点。)
3、介绍58.6÷11商的书写方法和表述方式。让学生写出10÷3、83÷11的商并交流。
(设计意图:了解循环小数的书写方式是数学学习的需要,写其他两个算式的商,既是书写练习,也为下面的讨论作准备。)
4、让学生观察三个算式的商,说一说它们有什么共同点和不同点。给学生充分发表自己意见的空间。
(设计意图:观察、讨论三个商的特点,为概括循环小数的概念作准备。)
四、课堂练习
学生独立完成练习。
教学反思:
教学目标:
1、巩固“平均分”的概念,知道平均分就是每一份分得结果同样多。
2、初步体验除法运算与生活实际的密切关系。
3、通过分一分活动,培养学生动手操作能力和初步的抽象概括能力。
教具准备:
筷子、苹果、盘子、小棒、计算机课件。
教学过程:
一、复习旧知,激趣引新
1、哪些分法是平均分?在括号里画“√”。
2、把8个面包平均分给4个小朋友。哪种分法对?对的在括号里画“√”。
二、扩充“平均分”方法,巩固概念
1、解读题意
8个果冻,每2个一份,能分成几份?分一分。 “每2个一份”是什么意思?你想怎样分?
2、感知不同分法
请学生用摆一摆、画一画等方法展示不同的分法。 根据乘法意义来分:2个2个地数,8里面有4个2。 2×4=8,4个2合起来是8。
8个果冻,每2个一份,能分成( 4 )份。
3、提炼不同分法的.共同意义
8个果冻,每2个一份,能分成几份?也就是看8里面有几个2.
三、巩固练习
1、基本练习
12块饼干,每3块一份,可以分成( )份。 12辆小汽车,每2辆一组,可以分成( )组。 12里面有6个2。
2、提升练习
16罐蜂蜜,每4罐分给一只小熊,可以分给( )只小熊。 有15个木块。
(1)每3个木块摆一个长方体,可以 摆( )个长方体。
(2)用这些木块摆5个一样的长方体,每个长方体用( )个木块。
四、课堂作业
作业:第10页“做一做”,第1题、第2题。
教学目标:
1、鼓励学生运用猜测、举例、验证等数学方法学习乘法分配律。
2、在学习的过程中,树立用规律简算,增强用规律验算得意识。
设计理念:
1、体现了“生活中处处有数学”。
2、课堂上灵活处理教材,选择适当的教法。
3、提高了小组的合作学习有效性。
4、促进了学生的主动性、个性化的学习。
课前准备:
教学挂图
教学过程:
一、创设情境,引出课题。
出示数学挂图:通过看图,把图意说一说。
二、提出问题,解答质疑。
弄清题以后,你能提出什么数学问题吗? (小组讨论)
生答师板书:济青高速公路全长约多少千米? 怎样解答呢?
(1)要求全长多少千米,可以先求每辆车分别行驶的路程,再求全长的路程。
110 × 2 + 90 × 2 = 220 + 180 = 400 (千米) 还可以先求两辆车1小时行驶的路程,再求全长的路程。
(110+90)× 2 = 200 × 2 = 400(千米)
仔细观察,你能发现什么规律? (小组合作探讨)
生交流:发现两个算式的结果相等。 110×2 + 90×2 =(110+90)× 2 这是个什么规律呢?让我们来验证一下吧。
(小组合作学习) 生自己举例来验证
生答师小结:两个数的和乘一个数,可以把它们分别乘这个数,再把乘得的积相加,这个规律就叫做乘法分配律。 你能用字母表示出这个规律吗?
生板书: (a + b).c = a .c + b .c 通过学习,让学生思考运用乘法分配律解决实际问题。 让学生讨论交流自己的想法:
①可以进行验算。
②可以使计算简便。 运用乘法分配律能使计算简便吗? (生小组举例探讨)
三、巩固练习
自主练习: 第一题:让学生在小组中快速连接,并说一说运用了什么运算定律。
第二题:先让生自己解答,然后再组内互相说出师运用的什么定律。
第三题:先观察,再说出对错,然后把错的题重新做出来,集体订 正,并说出错题错在哪里。
板书设计: 乘法分配律
110×2 + 90×2 (110 + 90)×2 = 220 + 180 = 200×2 = 400(千米) = 400(千米)
两个数的和乘一个数,可以先把它们分别和这个数相乘,再把乘得的积相加,这个规律就叫做乘法的分配律。
( a + b).c = a .c + b .c
教学目标:
1、通过摆筷子的真实情境,让学生体会数学存在于生活中,从而激发学生学习数学的兴趣。
2、使学生理解乘法口诀的意义,学习编、记、用2的乘法口诀,理解2的乘法口诀相邻两句之间的关系,掌握并能够熟练地运用。
3、培养学生初步的观察、分析、推理、概括、记忆等方面的能力。
教学过程:
一、创设情境。
课件出示情境图。
你们在家里帮妈妈做家务吗?小明和大家一样,也是个勤快的孩子,今天小明家来了许多客人,他帮妈妈做什么家务呢?
学生观察回答后,借机教育学生要体会长辈的辛苦,多做一些力所能及的家务活,培养学生爱劳动的意识。
二、探究新知。
1、摆一摆,填一填。
小组合作:用小棒代替筷子摆一摆,并完成书上的表格。
2、编2的乘法口诀。
让学生借助筷子图写出相应的乘法算式,然后借助编5的乘法口诀的经验编出2的乘法口诀。
3、探究乘法口诀的规律。
小组活动:观察2的乘法口诀,和同桌说说,你发现了什么?
汇报:请几名学生汇报他们发现的规律,其他学生认真听,如果有不同的看法就举手补充。
三、巩固与提高。
1、游戏:找朋友。
教师出示乘法口诀,由桌子上有乘法算式的同学将算式将相应的算式举起来,其他同学判断。
2、游戏:摘苹果。
课件出示苹果树:秋天到了,树上的苹果就快熟了,你想把它摘下来吗?仔细看看哪个苹果长大了,你能解决它身上的问题吗?
学生回答苹果上面算式的得数,并说说用哪句乘法口诀计算。
3、小组比赛:有几只手?
课件示范规则。
4个小组比赛,看看哪个小组说得又快又好。
4、思考题。
课件出示题目。
同桌谈论、解决问题。
四、课堂总结。
你有什么收获?还有什么问题吗?
教学目标
1、理解生活中百分率问题的含义,掌握求百分率的方法。
2、理解求百分率应用题的一般结构和求百分率思考过程的主要步骤,提高学生解决问题的能力。
3、通过解决生活中简单的实际问题,培养学生数学的应用意识。
教学重点与难点
重点:会解答求百分率(或一个数是另一个数的百分之几)的应用题。
难点:对一些百分率的理解。
教学过程:
一、回顾百分数意义——直奔课题
师:同学们前面学习百分数的意义和写法,还学习了百分数、小数和分数的互化,其实,百分数在日常生活中应用非常广泛,人们经常用百分数来解决问题。
这节课就让我们解决生活中的百分数问题。(板书课题:用百分数解决问题)
二、探索——解决问题
(一)教学例1第(1)题
1、出示信息:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。
提问:你能提一个求分率的数学问题吗?
(已达到《标准》的人数占六年级总人数的几分之几?)
师:谁来解答这个问题?
生:120÷160=
师:你知道这个题目真正的问题是什么呢?(出示问题)你们能解决这个问题吗?有什么疑问?(生质疑)师解疑,板书什么是达标率。
让学生说说六年级的达标率是什么意思?
怎样解决这个问题呢?(同桌进行交流)
生:表示已达标的人数占六年级学生总人数的百分之几,六年级学生总人数为单位“1”。
达标率=达标学生人数÷学生总人数
师:从这儿,我们就可知道求百分数的方法跟求一个数是另一个数的几分之几是一样的。
师:请同学们打开书第85页例1的第1部分比较一下,看有什么不同?
(学生边说老师边板书:)
生:写法不同,书本写成分数的形式了,而且多了“乘100%”
师:谁知道为什么要“乘100%”呢?不乘行吗?
生:因为如果不乘100%,结果是分数的形式;而乘了100%结果就是百分数了。现在知道了什么是达标率,也知道了怎样求达标率,能不能解决这个问题呢?(学生计算)汇报板书
师:对达标率的计算你还有疑问吗?
生:0.75×100%怎样计算呀?
师:问得好,那谁能帮他解决这个疑问呢?
生:我知道,可以把100%看作1,再把0.75化成75%就可以了。
生:老师,我不是这样想的,可以把100%中的100乘0.75,“%”照写。
老师总结:同学们都说得非常好,两种理解方法都可以,你认为哪一种更适合你学习的,你就可以选用那一种。
(板书: ×100%=0.75×100%=75%)
师:同学们现在你对求达标率这种问题会了吗?你还有没有不理解的地方?
(灵活处理)
(二)教学例1的第(2)题
解决了达标率问题,下面我们到生物组去看一看。这里有一个还没完成的试验报告。他们遇到什么困难了?什么是发芽率?(师板书)知道了什么是发芽率,怎样计算呢?你又能否像达标率一样把发芽率用公式表示出来?(让同桌带着问题讨论)学生汇报,老师完善板书。
师:现在分3大组完成这个试验报告并汇报结果,看哪一组最快最好。
师:你可以为这次试验作个总结吗?
生:从这次试验可知绿豆的发芽率最高。
生:我从这次试验可知大蒜的发芽率最低。
生:我知道花生的发芽率比大蒜的发芽率高。
(有利于学生对百分数问题的进一步理解与学习。)
你们知道计算发芽率有什么作用呢?(生答,师小结)
三、小结运用
师:同学们对比求达标率和发芽率,你能发现它们有共同的特点吗?
生:都是两个量比较的结果、都是部分与整体的比较、都要乘100%、都是表示一个数是另一个数的百分之几、公式的分母都是单位“1”等等
师:同学们发现的真多,求百分率的问题其实都有一个特点,都是部分量与整体的比较。
师:其实,现实生活中像达标率、发芽率这样的百分数还有很多很多,你还能举例出其他的百分率吗?试试看。
学生举例:学生的出勤率、产品的合格率、小麦的出粉率、花生的出油率等等,师板书。这些百分率怎么计算呢?小组同学商量一下。
学生以4人小组合作写百分率的公式。(组长负责作好记录并汇报。)
老师这里就有一个求花生出油率的问题,想去看看吗?出示做一做第2题。
学生做题汇报。
精明小法官:
1、学校上学期种了105棵花苗,现在全部都成活,这批花苗的成活率就是105%( )。
2、王师傅生产的98个零件,全部都检测合格,这些零件的合格率就是98%( )。
3、25克盐放入100克水中,盐水的含盐率是25%( )。
4、某工人加工了103个零件,有100个合格,这些零零件的合格是100%( )。
四、全课总结
师:同学们,通过这节课的学习,你们有什么收获?
学生自由回答。
师:你认为求一个数是另一个数的百分之几(求百分率)应用题的关键是什么?方法又是怎样的?
文档为doc格式