小学数学教案
作为一位不辞辛劳的人民教师,就有可能用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。来参考自己需要的教案吧!下面是小编精心整理的小学数学教案,希望能够帮助到大家。
小学数学教案1教学目标
1、在游戏活动中,帮助学生掌握有关“6”和“7”的加减法、
2、在游戏活动中,鼓励学生积极参与、积极交流、积极思考,并培养学生有序思维的能力、
3、在游戏活动中,使学生不断积累经验,发展他们的数感、
教学重点
掌握“6”和“7”的加减法、
教学难点
培养学生有序思维的能力、
教学过程
一、活动一:师生进行猜数游戏
(一)猜数“2”或“4”
1、教师谈话:我们一起玩一个猜数游戏好不好?(教师出示一个磁珠,让学生看看它的大小)猜一猜老师的两只手里一共抓了几个这样的磁珠?
2、学生猜数,并说出简单的理由、
3、教师提问:
(1)老师的手里到底有几个磁珠哪?想不想知道?
(2)看看老师的左手有几个?(教师把左手的4个磁珠贴在黑板上)
(3)右手哪?(教师把右手的2个磁珠贴在黑板上)
(4)有谁猜对了?你怎么知道一共有6个磁珠呀?
(左手有4个磁珠,右手有2个磁珠,合起来一共有6个、)
(5)你能用数学算式表示吗?
2+4=6 4+2=6
4、教师谈话:还想不想再玩一次?我们还用这6个磁珠,(教师把这六个磁珠摘下,重新握在手里)老师的两只手里都有磁珠,如果告诉你一只手里有几个,你能猜出另一只手里有几个吗?(教师按照学生的意愿出示一只手中的磁珠的数量2或4)谁能猜出我的另一只手中有几个?
5、教师提问:
(1)你猜对了吗?你怎么那么肯定你猜对了?
一共有6个磁珠,老师左手有2个,右手一定有4个、
(2)能把你的想法用数学算式表示出来吗?
2+4=6 4+2=6 6-2=4 6-4=2
6、小结:你们猜得有理有据,所以都猜对了,快为你们的胜利鼓鼓掌吧!
(二)猜数“3”
1、我们还用这6个小磁珠,换个玩法好不好?(教师用手捂住3个)猜猜老师用手捂住了几个?
2、你能用数学算式表示吗?3+3=6 6-3=3
(三)猜数“1”和“5”
1、还是这6个磁珠,谁愿意当小老师带大家玩一玩,(教师悄悄地引导请上来的学生捂住1个)猜一猜他捂上了几个?
1+5=6 5+1=6 6-1=5 6-5=1
2、你们是不是都很想玩猜数游戏?那同桌的两位小朋友就来一次猜数大赛好不好?
二、活动二:生生进行“猜数游戏”
(一)教师谈话:同学们从学具盒里数出7个小珠子,看谁数得快!
(二)教师说明游戏规则
一个同学捂,另一个同学猜,并说出算式、如果猜和算式都说对了,就可以从学具盒里拿出一个小珠子,放在盒盖中,表示得一分、比赛结束时,谁得的小珠子多,谁就获得了胜利、
(三)小组活动、
(四)你们俩是怎样玩猜数游戏的,结果怎样?
0+7=7 7+0=7 7-0=7 7-7=0
1+6=7 6+1=7 7-1=6 7-6=1
2+5=7 5+2=7 7-2=5 7-5=2
3+4=7 4+3=7 7-3=4 7-4=3
(五)小结
我们一起玩了猜数游戏,玩得高兴不高兴?我们今天又结识了许多算式朋友!这些朋友可以帮助我们做许多事,信不信?
三、活动三:口算抢答
3+4=,7-4=,7-3=,7-5=,1+6=,2+5=
6-3=,7-1=,7-7=,4+2=,3+3=,1+5=
小学数学教案21、摆小棒。一根一根地摆,边摆边说,1个1、2个1、……9个1
2、根据摆的情况,说算式。1个1是1、2个1是2、……9个1是9
板书:1×1=1
1×2=2
1×3=3
……
1×9=9
观察算式,你发现这些算式有什么特点?
3、编口诀。
①小组活动,你能编出这些乘法的口诀吗?组长记录。
②全班反馈。教师板书:一一得一
一二得二
……
一九得九
4、全班交流讨论,说一说如:“一二”是表示什么?“得二”又表示什么?
同桌交流。
5、记口诀。①你怎样记住这些口诀?
②熟记口诀。
三、课堂活动
说算式,对口诀。
1×3————一三得三
……
四、课堂小结:
这节课我们学习了什么?你还有什么问题?
板书设计
1的乘法口诀
1×1=1一一得一
1×2=2一二得二
1×3=3一三得三
…………
1×9=9一九得九
小学数学教案3【教学内容】
教材第2页例1。
【教学目标】
知识与技能:在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
过程与方法:通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
情感、态度与价值观:引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
【重点难点】
重点:理解分数乘整数的意义,掌握分数乘整数的计算方法。
难点:总结分数乘整数的计算法则。
【导学过程】
【情景导入】
(一)探索分数乘整数的意义
1、教学例1(课件出示情景图)
师:想一想,你还能找出不一样的方法验证你的计算结果吗?
2、小组交流,汇报结果
3、比较分析
师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设:
预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。
引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)
师:我们再来比较 ……此处隐藏5292个字……学学习有着浓厚的兴趣,但也有一部分学生与其他学生差异较大,对数学学习缺乏信心,积极思考的习惯有待于培养。因此在本节教学中,我关注更多的是用学生已有的知识经验激发学生的兴趣。
三、教学目标:
1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重点:用列方程的方法解决问题。
四、教学难点:
明确题中的数量关系。
五、教学准备:
PPT课件、尺子等。
六、教学过程:
一、复习导入
1、第一关
找出下面题中的单位“1”,并写出数量关系式。
(1)白兔的只数占兔子总只数的1/3。
(2)甲数正好是乙数的4/5。
(3)男生人数的5/6恰好和女生同样多。
2、第二关
阅读下面的句子,说说你的理解。
根据测定,儿童体内的水分约占体重的4/5,小明体重有35kg。他的体内水分是多少千克?
3、师小结:同学们对于运用分数乘法来解决问题这一块内容掌握的真不错。今天,我们将继续研究运用分数除法来解决一些生活中的问题。(板书:分数除法解决问题(一))
二、探究新知
(一)收集信息,明确条件问题
出示例题:根据测定,成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5。小明体内有28kg的水分,小明的体重是多少千克?
(1)你知道了什么信息?
(2)成人的信息与问题有关系吗?
(二)画图分析,分析数量关系
提问:每当遇到这样的题,我们常规作法是什么?(找到关系句,画出单位“1”,画图理解,写出等量关系式。)
(1)问题中最关键的句子是什么?
(2)从“儿童体内的水分约占体重的4/5”这句话中你能知道什么?
(3)哪个量是单位“1”?用线段图如何表示?
(4)列出等量关系式。
单位“1”的量×对应分数=对应量
小明的体重×4/5=小明体内水分的质量
(三)读懂过程,感悟不同方法
(1)在等量关系式中,哪个量是未知的,哪个量是已知的?
(2)学生尝试完成。
预设有3种方法。
方法一:根据等量关系式列方程解,设小明的体重是×千克,列出方程,解出×。
方法二:根据:小明的体重×4/5=小明体内水分的质量
则:小明的体重=小明体内水分的质量÷4/5
方法三:根据份数的方法。28÷4×5=7×5=35(kg)
(四)回顾反思,沟通不同方法
(1)怎样检验结果是否正确?35×4/5=28
(2)这些不同的算法中有什么相同点与不同点?(单位“1”相同,数量之间的关系相同。但一道是已知单位“1”,一道是未知单位“1”)
三、巩固练习,提升认识
1、完成练习八第1题和第3题、先自主解答,再集体交流。
2、完成练习八第2题、做完思考:“鲜牛奶250ml”这个条件与要求的问题有没有关系?
3、完成练习八4题。本题有几个要求的问题?有哪些信息?你是怎样筛选的?
四、全课总结,布置作业
1、谈谈你今天有什么收获?
2、作业:第39页练习八,第5、6题。
小学数学教案11教学目标
1、使学生理解整数除法分数的计算方法,并能正确地进行计算。
2、培养学生分析、推理和概括等思维能力。
教学重难点
整数除以分数的计算方法。
教学准备
教学过程设计
教学内容
师生活动
备注
一、复习旧知
二、教学新课
一、巩固练习
四、小结。
五、作业
1、口算
3/431/542/766/112
分数除以整数通常是怎样计算的?
2、复习第(1)题
学生口答算式与结果。
这一题已知什么数量,要求什么数量?按怎样的数量关系求?
出示数量关系式:速度=路程时间
3、口答填空
3/10小时是()个1/10小时。
1小时是()个1/10小时。
4、引入新课
1、教学例2
这一题已知什么数量?要求什么数量/根据数量关系式怎样列式?
(183/10)
画出一条线段,并提问:如果把这条线段看做1小时行的千米数,怎样来表示3/10小时行的千米数?
根据学生的回答把这条线段平均分成10份,其中的3份用颜色线画出。
师边述说边画线段。
问:从图伤看,3/10小时行驶18千米,就是几个1/10小时行18千米?求1小时行多少千米。就是求几个1/10小时行多少千米?
要求10个1/10小时行多少千米。先要求出什么?图上哪一段表示1/10小时行的路程?
根据回答把线段图补充完整。
讨论:按这样来想,你认为第一步求什么?怎样求?
(1)1/10小时行的千米数是:183
为什么要用183?183能不能转化成用乘法来计算?
讨论:1/10小时行的千米数已经用式子表示出来了,你觉得第二步可以求什么?怎样求?
(2)1小时行的千米数是:181/310
(3)为什么要用181/3的积再乘10?根据乘法结合律,181/310还可以怎样乘?
问:183/10求出的是1小时行的千米数,1810/3也表示1小时行的千米数,那么183/10之间有怎样的关系?
从上面的推想过程看出,183/10转化成什么样的计算了?
比较这个等式里的算式,在等式两边,什么没有变?什么变了?是怎样变的?
2、小结。
1、练一练1
2、练一练2整数除以分数是怎样计算的?
3、练习八2整数除以分数和整数乘分数在计算时有什么不同?
4、练习八3
分组练习
做完后问:每一组的两道题有什么不同地方?计算时有什么共同的地方?
说一说在整数除以分数时,要乘哪个数的倒数,在分数除以整数时,要乘哪个数的倒数。
练习八、1、4、5
181/310
=18(1/310)
=1810/3
课后感受
此节课的教法与前一节类似,更多的在于在学生昨天学会分析方法的前提下更多的放手让学生自己去探索规律、寻求解题方法。
文档为doc格式